LLM 智能体
分步构建一个终端聊天智能体,从简单的 LLM 调用逐步升级到带有工具的流式智能体。
构建目标
一个终端聊天智能体,具备以下功能:
- 使用 LLM 生成文本
- 维护多轮对话
- 实时流式传输响应
- 使用工具访问外部能力
项目结构
llm-agent/
├── .wippy.yaml
├── wippy.lock
└── src/
├── _index.yaml
├── ask.lua
├── chat.lua
└── tools/
├── _index.yaml
├── current_time.lua
└── calculate.lua
阶段 1:简单生成
从一个基本函数开始,使用字符串提示词调用 llm.generate()。
创建项目
mkdir llm-agent && cd llm-agent
mkdir -p src
条目定义
创建 src/_index.yaml:
version: "1.0"
namespace: app
entries:
- name: os_env
kind: env.storage.os
- name: processes
kind: process.host
lifecycle:
auto_start: true
- name: dep.llm
kind: ns.dependency
component: wippy/llm
version: "*"
parameters:
- name: env_storage
value: app:os_env
- name: process_host
value: app:processes
- name: ask
kind: function.lua
source: file://ask.lua
method: handler
imports:
llm: wippy.llm:llm
LLM 模块需要两个基础设施条目:
env.storage.os从环境变量提供 API 密钥process.host提供 LLM 模块内部使用的进程运行时
生成代码
创建 src/ask.lua:
local llm = require("llm")
local function handler(input)
local response, err = llm.generate(input, {
model = "gpt-4.1-nano",
temperature = 0.7,
max_tokens = 512,
})
if err then
return nil, err
end
return response.result
end
return { handler = handler }
模型定义
LLM 模块从注册表解析模型。在 _index.yaml 中添加模型条目:
- name: gpt-4.1-nano
kind: registry.entry
meta:
name: gpt-4.1-nano
type: llm.model
title: GPT-4.1 Nano
comment: Fast, affordable model
capabilities:
- generate
- tool_use
- structured_output
class:
- fast
priority: 100
max_tokens: 1047576
output_tokens: 32768
pricing:
input: 0.1
output: 0.4
providers:
- id: wippy.llm.openai:provider
provider_model: gpt-4.1-nano
初始化并测试
wippy init
wippy run -x app:ask "What is the capital of France?"
这会直接调用函数并打印结果。模型定义告诉 LLM 模块使用哪个提供商以及向 API 发送什么模型名称。
阶段 2:对话
从单次调用升级到使用提示词构建器的多轮对话。将条目从函数更改为带有终端 I/O 的进程。
更新条目定义
将 ask 条目替换为 chat 进程并添加终端依赖:
- name: dep.terminal
kind: ns.dependency
component: wippy/terminal
version: "*"
- name: chat
kind: process.lua
meta:
command:
name: chat
short: Start a terminal chat
source: file://chat.lua
method: main
modules:
- io
- process
imports:
llm: wippy.llm:llm
prompt: wippy.llm:prompt
聊天进程
创建 src/chat.lua:
local io = require("io")
local llm = require("llm")
local prompt = require("prompt")
local function main()
io.print("Chat (type 'quit' to exit)")
io.print("")
local conversation = prompt.new()
conversation:add_system("You are a helpful assistant. Be concise and direct.")
while true do
io.write("> ")
io.flush()
local input = io.readline()
if not input or input == "quit" or input == "exit" then break end
if input == "" then goto continue end
conversation:add_user(input)
local response, err = llm.generate(conversation, {
model = "gpt-4.1-nano",
temperature = 0.7,
max_tokens = 1024,
})
if err then
io.print("Error: " .. tostring(err))
goto continue
end
io.print(response.result)
io.print("")
conversation:add_assistant(response.result)
::continue::
end
io.print("Bye!")
end
return { main = main }
运行
wippy update
wippy run chat
提示词构建器维护完整的对话历史。每轮追加用户消息和助手响应,为模型提供先前交换的上下文。
阶段 3:智能体框架
智能体模块在原始 LLM 调用之上提供了更高层的抽象。智能体以声明式方式定义提示词、模型和工具,然后通过上下文/运行器模式加载和执行。
添加智能体依赖
在 _index.yaml 中添加:
- name: dep.agent
kind: ns.dependency
component: wippy/agent
version: "*"
parameters:
- name: process_host
value: app:processes
定义智能体
添加智能体条目:
- name: assistant
kind: registry.entry
meta:
type: agent.gen1
name: assistant
title: Assistant
comment: Terminal chat agent
prompt: |
You are a helpful terminal assistant. Be concise and direct.
Answer questions clearly. If you don't know something, say so.
Do not use emoji in responses.
model: gpt-4.1-nano
max_tokens: 1024
temperature: 0.7
更新聊天进程
切换到智能体框架。更新条目导入:
- name: chat
kind: process.lua
meta:
command:
name: chat
short: Start a terminal chat
source: file://chat.lua
method: main
modules:
- io
- process
imports:
prompt: wippy.llm:prompt
agent_context: wippy.agent:context
更新 src/chat.lua:
local io = require("io")
local prompt = require("prompt")
local agent_context = require("agent_context")
local function main()
io.print("Chat (type 'quit' to exit)")
io.print("")
local ctx = agent_context.new()
local runner, err = ctx:load_agent("app:assistant")
if err then
io.print("Failed to load agent: " .. tostring(err))
return
end
local conversation = prompt.new()
while true do
io.write("> ")
io.flush()
local input = io.readline()
if not input or input == "quit" or input == "exit" then break end
if input == "" then goto continue end
conversation:add_user(input)
local response, gen_err = runner:step(conversation)
if gen_err then
io.print("Error: " .. tostring(gen_err))
goto continue
end
io.print(response.result)
io.print("")
conversation:add_assistant(response.result)
::continue::
end
io.print("Bye!")
end
return { main = main }
智能体框架将智能体定义(提示词、模型、参数)与执行逻辑分离。同一个智能体可以在运行时使用不同的上下文、工具和模型加载。
阶段 4:流式传输
逐令牌流式传输响应,而不是等待完整响应。
更新模块
将 channel 添加到进程模块:
modules:
- io
- process
- channel
流式传输实现
更新 src/chat.lua:
local io = require("io")
local prompt = require("prompt")
local agent_context = require("agent_context")
local STREAM_TOPIC = "stream"
local function stream_response(runner, conversation, stream_ch)
local done_ch = channel.new(1)
coroutine.spawn(function()
local response, err = runner:step(conversation, {
stream_target = {
reply_to = process.pid(),
topic = STREAM_TOPIC,
},
})
done_ch:send({ response = response, err = err })
end)
local full_text = ""
while true do
local result = channel.select({
stream_ch:case_receive(),
done_ch:case_receive(),
})
if not result.ok then break end
if result.channel == done_ch then
local r = result.value
return full_text, r.response, r.err
end
local chunk = result.value
if chunk.type == "chunk" then
io.write(chunk.content or "")
full_text = full_text .. (chunk.content or "")
elseif chunk.type == "done" then
local r, ok = done_ch:receive()
if ok and r then
return full_text, r.response, r.err
end
return full_text, nil, nil
elseif chunk.type == "error" then
return nil, nil, chunk.error and chunk.error.message or "stream error"
end
end
return full_text, nil, nil
end
local function main()
io.print("Chat (type 'quit' to exit)")
io.print("")
local ctx = agent_context.new()
local runner, err = ctx:load_agent("app:assistant")
if err then
io.print("Failed to load agent: " .. tostring(err))
return
end
local conversation = prompt.new()
local stream_ch = process.listen(STREAM_TOPIC)
while true do
io.write("> ")
io.flush()
local input = io.readline()
if not input or input == "quit" or input == "exit" then break end
if input == "" then goto continue end
conversation:add_user(input)
local text, _, gen_err = stream_response(runner, conversation, stream_ch)
if gen_err then
io.print("Error: " .. tostring(gen_err))
goto continue
end
io.print("")
if text and text ~= "" then
conversation:add_assistant(text)
end
::continue::
end
process.unlisten(stream_ch)
io.print("Bye!")
end
return { main = main }
关键模式:
coroutine.spawn在单独的协程中运行runner:step(),以便主协程可以处理流数据块channel.select多路复用流通道和完成通道- 单个
process.listen()创建一次并在各轮次中复用 - 文本被累积用于添加到对话历史中
阶段 5:工具
赋予智能体可调用的工具以访问外部能力。
定义工具
创建 src/tools/_index.yaml:
version: "1.0"
namespace: app.tools
entries:
- name: current_time
kind: function.lua
meta:
type: tool
title: Current Time
input_schema: |
{ "type": "object", "properties": {}, "additionalProperties": false }
llm_alias: get_current_time
llm_description: Get the current date and time in UTC.
source: file://current_time.lua
modules: [time]
method: handler
- name: calculate
kind: function.lua
meta:
type: tool
title: Calculate
input_schema: |
{
"type": "object",
"properties": {
"expression": {
"type": "string",
"description": "Math expression to evaluate"
}
},
"required": ["expression"],
"additionalProperties": false
}
llm_alias: calculate
llm_description: Evaluate a mathematical expression and return the result.
source: file://calculate.lua
modules: [expr]
method: handler
工具元数据告诉 LLM 该工具的功能:
input_schema是定义参数的 JSON Schemallm_alias是 LLM 看到的函数名称llm_description说明何时使用该工具
实现工具
创建 src/tools/current_time.lua:
local time = require("time")
local function handler()
local now = time.now()
return {
utc = now:format("2006-01-02T15:04:05Z"),
unix = now:unix(),
}
end
return { handler = handler }
创建 src/tools/calculate.lua:
local expr = require("expr")
local function handler(args)
local result, err = expr.eval(args.expression)
if err then
return { error = tostring(err) }
end
return { result = result }
end
return { handler = handler }
将工具注册到智能体
更新 src/_index.yaml 中的智能体条目以引用工具:
- name: assistant
kind: registry.entry
meta:
type: agent.gen1
name: assistant
title: Assistant
comment: Terminal chat agent
prompt: |
You are a helpful terminal assistant. Be concise and direct.
Answer questions clearly. If you don't know something, say so.
Use tools when they help answer the question.
Do not use emoji in responses.
model: gpt-4.1-nano
max_tokens: 1024
temperature: 0.7
tools:
- app.tools:current_time
- app.tools:calculate
添加工具执行
更新聊天进程模块以包含 json 和 funcs:
modules:
- io
- json
- process
- channel
- funcs
更新 src/chat.lua 添加工具执行:
local io = require("io")
local json = require("json")
local funcs = require("funcs")
local prompt = require("prompt")
local agent_context = require("agent_context")
local STREAM_TOPIC = "stream"
local function stream_response(runner, conversation, stream_ch)
local done_ch = channel.new(1)
coroutine.spawn(function()
local response, err = runner:step(conversation, {
stream_target = {
reply_to = process.pid(),
topic = STREAM_TOPIC,
},
})
done_ch:send({ response = response, err = err })
end)
local full_text = ""
while true do
local result = channel.select({
stream_ch:case_receive(),
done_ch:case_receive(),
})
if not result.ok then break end
if result.channel == done_ch then
local r = result.value
return full_text, r.response, r.err
end
local chunk = result.value
if chunk.type == "chunk" then
io.write(chunk.content or "")
full_text = full_text .. (chunk.content or "")
elseif chunk.type == "done" then
local r, ok = done_ch:receive()
if ok and r then
return full_text, r.response, r.err
end
return full_text, nil, nil
elseif chunk.type == "error" then
return nil, nil, chunk.error and chunk.error.message or "stream error"
end
end
return full_text, nil, nil
end
local function execute_tools(tool_calls)
local results = {}
for _, tc in ipairs(tool_calls) do
local args = tc.arguments
if type(args) == "string" then
args = json.decode(args) or {}
end
io.write("[" .. tc.name .. "] ")
io.flush()
local result, err = funcs.call(tc.registry_id, args)
if err then
results[tc.id] = { error = tostring(err) }
io.print("error")
else
results[tc.id] = result
io.print("done")
end
end
return results
end
local function run_turn(runner, conversation, stream_ch)
while true do
local text, response, err = stream_response(runner, conversation, stream_ch)
if err then
io.print("")
return nil, err
end
if text and text ~= "" then
io.print("")
end
local tool_calls = response and response.tool_calls
if not tool_calls or #tool_calls == 0 then
return text, nil
end
if text and text ~= "" then
conversation:add_assistant(text)
end
local results = execute_tools(tool_calls)
for _, tc in ipairs(tool_calls) do
local result = results[tc.id]
local result_str = json.encode(result) or "{}"
conversation:add_function_call(tc.name, tc.arguments, tc.id)
conversation:add_function_result(tc.name, result_str, tc.id)
end
end
end
local function main()
io.print("Terminal Agent (type 'quit' to exit)")
io.print("")
local ctx = agent_context.new()
local runner, err = ctx:load_agent("app:assistant")
if err then
io.print("Failed to load agent: " .. tostring(err))
return
end
local conversation = prompt.new()
local stream_ch = process.listen(STREAM_TOPIC)
while true do
io.write("> ")
io.flush()
local input = io.readline()
if not input or input == "quit" or input == "exit" then break end
if input == "" then goto continue end
conversation:add_user(input)
local text, gen_err = run_turn(runner, conversation, stream_ch)
if gen_err then
io.print("Error: " .. tostring(gen_err))
goto continue
end
if text and text ~= "" then
conversation:add_assistant(text)
end
::continue::
end
process.unlisten(stream_ch)
io.print("Bye!")
end
return { main = main }
工具执行循环:
- 使用流式传输调用
runner:step() - 如果响应包含
tool_calls,通过funcs.call()执行每个工具 - 将工具调用和结果添加到对话中
- 回到步骤 1,让智能体整合结果
- 当没有更多工具调用时,返回最终文本
运行智能体
wippy update
wippy run chat
Terminal Agent (type 'quit' to exit)
> what time is it?
[get_current_time] done
The current time is 17:20 UTC on February 12, 2026.
> what is 125 * 16?
[calculate] done
125 * 16 = 2000.
> quit
Bye!