Agente LLM
Construye un agente de chat para terminal paso a paso, progresando desde una simple llamada LLM hasta un agente con streaming y herramientas.
Lo Que Construiremos
Un agente de chat para terminal que:
- Genera texto con un LLM
- Mantiene conversaciones multi-turno
- Transmite respuestas en tiempo real
- Usa herramientas para acceder a capacidades externas
Estructura del Proyecto
llm-agent/
├── .wippy.yaml
├── wippy.lock
└── src/
├── _index.yaml
├── ask.lua
├── chat.lua
└── tools/
├── _index.yaml
├── current_time.lua
└── calculate.lua
Fase 1: Generacion Simple
Comienza con una funcion basica que llama a llm.generate() con un prompt de texto.
Crear el Proyecto
mkdir llm-agent && cd llm-agent
mkdir -p src
Definiciones de Entradas
Crea src/_index.yaml:
version: "1.0"
namespace: app
entries:
- name: os_env
kind: env.storage.os
- name: processes
kind: process.host
lifecycle:
auto_start: true
- name: dep.llm
kind: ns.dependency
component: wippy/llm
version: "*"
parameters:
- name: env_storage
value: app:os_env
- name: process_host
value: app:processes
- name: ask
kind: function.lua
source: file://ask.lua
method: handler
imports:
llm: wippy.llm:llm
El modulo LLM necesita dos entradas de infraestructura:
env.storage.osproporciona claves API desde variables de entornoprocess.hostproporciona el runtime de procesos que el modulo LLM usa internamente
Codigo de Generacion
Crea src/ask.lua:
local llm = require("llm")
local function handler(input)
local response, err = llm.generate(input, {
model = "gpt-4.1-nano",
temperature = 0.7,
max_tokens = 512,
})
if err then
return nil, err
end
return response.result
end
return { handler = handler }
Definicion del Modelo
El modulo LLM resuelve modelos desde el registro. Agrega una entrada de modelo a _index.yaml:
- name: gpt-4.1-nano
kind: registry.entry
meta:
name: gpt-4.1-nano
type: llm.model
title: GPT-4.1 Nano
comment: Fast, affordable model
capabilities:
- generate
- tool_use
- structured_output
class:
- fast
priority: 100
max_tokens: 1047576
output_tokens: 32768
pricing:
input: 0.1
output: 0.4
providers:
- id: wippy.llm.openai:provider
provider_model: gpt-4.1-nano
Inicializar y Probar
wippy init
wippy run -x app:ask "What is the capital of France?"
Esto llama a la funcion directamente e imprime el resultado. La definicion del modelo le indica al modulo LLM que proveedor usar y que nombre de modelo enviar a la API.
Fase 2: Conversaciones
Pasa de una sola llamada a una conversacion multi-turno usando el constructor de prompts. Cambia la entrada de una funcion a un proceso con E/S de terminal.
Actualizar Definiciones de Entradas
Reemplaza la entrada ask con un proceso chat y agrega la dependencia de terminal:
- name: dep.terminal
kind: ns.dependency
component: wippy/terminal
version: "*"
- name: chat
kind: process.lua
meta:
command:
name: chat
short: Start a terminal chat
source: file://chat.lua
method: main
modules:
- io
- process
imports:
llm: wippy.llm:llm
prompt: wippy.llm:prompt
Proceso de Chat
Crea src/chat.lua:
local io = require("io")
local llm = require("llm")
local prompt = require("prompt")
local function main()
io.print("Chat (type 'quit' to exit)")
io.print("")
local conversation = prompt.new()
conversation:add_system("You are a helpful assistant. Be concise and direct.")
while true do
io.write("> ")
io.flush()
local input = io.readline()
if not input or input == "quit" or input == "exit" then break end
if input == "" then goto continue end
conversation:add_user(input)
local response, err = llm.generate(conversation, {
model = "gpt-4.1-nano",
temperature = 0.7,
max_tokens = 1024,
})
if err then
io.print("Error: " .. tostring(err))
goto continue
end
io.print(response.result)
io.print("")
conversation:add_assistant(response.result)
::continue::
end
io.print("Bye!")
end
return { main = main }
Ejecutar
wippy update
wippy run chat
El constructor de prompts mantiene el historial completo de la conversacion. Cada turno agrega el mensaje del usuario y la respuesta del asistente, dando al modelo contexto de los intercambios anteriores.
Fase 3: Framework de Agentes
El modulo de agentes proporciona una abstraccion de nivel superior sobre las llamadas LLM directas. Los agentes se definen declarativamente con un prompt, modelo y herramientas, y luego se cargan y ejecutan a traves de un patron de contexto/runner.
Agregar Dependencia del Agente
Agrega a _index.yaml:
- name: dep.agent
kind: ns.dependency
component: wippy/agent
version: "*"
parameters:
- name: process_host
value: app:processes
Definir un Agente
Agrega una entrada de agente:
- name: assistant
kind: registry.entry
meta:
type: agent.gen1
name: assistant
title: Assistant
comment: Terminal chat agent
prompt: |
You are a helpful terminal assistant. Be concise and direct.
Answer questions clearly. If you don't know something, say so.
Do not use emoji in responses.
model: gpt-4.1-nano
max_tokens: 1024
temperature: 0.7
Actualizar el Proceso de Chat
Cambia al framework de agentes. Actualiza los imports de la entrada:
- name: chat
kind: process.lua
meta:
command:
name: chat
short: Start a terminal chat
source: file://chat.lua
method: main
modules:
- io
- process
imports:
prompt: wippy.llm:prompt
agent_context: wippy.agent:context
Actualiza src/chat.lua:
local io = require("io")
local prompt = require("prompt")
local agent_context = require("agent_context")
local function main()
io.print("Chat (type 'quit' to exit)")
io.print("")
local ctx = agent_context.new()
local runner, err = ctx:load_agent("app:assistant")
if err then
io.print("Failed to load agent: " .. tostring(err))
return
end
local conversation = prompt.new()
while true do
io.write("> ")
io.flush()
local input = io.readline()
if not input or input == "quit" or input == "exit" then break end
if input == "" then goto continue end
conversation:add_user(input)
local response, gen_err = runner:step(conversation)
if gen_err then
io.print("Error: " .. tostring(gen_err))
goto continue
end
io.print(response.result)
io.print("")
conversation:add_assistant(response.result)
::continue::
end
io.print("Bye!")
end
return { main = main }
El framework de agentes separa la definicion del agente (prompt, modelo, parametros) de la logica de ejecucion. El mismo agente puede cargarse con diferentes contextos, herramientas y modelos en tiempo de ejecucion.
Fase 4: Streaming
Transmite respuestas token por token en lugar de esperar la respuesta completa.
Actualizar Modulos
Agrega channel a los modulos del proceso:
modules:
- io
- process
- channel
Implementacion de Streaming
Actualiza src/chat.lua:
local io = require("io")
local prompt = require("prompt")
local agent_context = require("agent_context")
local STREAM_TOPIC = "stream"
local function stream_response(runner, conversation, stream_ch)
local done_ch = channel.new(1)
coroutine.spawn(function()
local response, err = runner:step(conversation, {
stream_target = {
reply_to = process.pid(),
topic = STREAM_TOPIC,
},
})
done_ch:send({ response = response, err = err })
end)
local full_text = ""
while true do
local result = channel.select({
stream_ch:case_receive(),
done_ch:case_receive(),
})
if not result.ok then break end
if result.channel == done_ch then
local r = result.value
return full_text, r.response, r.err
end
local chunk = result.value
if chunk.type == "chunk" then
io.write(chunk.content or "")
full_text = full_text .. (chunk.content or "")
elseif chunk.type == "done" then
local r, ok = done_ch:receive()
if ok and r then
return full_text, r.response, r.err
end
return full_text, nil, nil
elseif chunk.type == "error" then
return nil, nil, chunk.error and chunk.error.message or "stream error"
end
end
return full_text, nil, nil
end
local function main()
io.print("Chat (type 'quit' to exit)")
io.print("")
local ctx = agent_context.new()
local runner, err = ctx:load_agent("app:assistant")
if err then
io.print("Failed to load agent: " .. tostring(err))
return
end
local conversation = prompt.new()
local stream_ch = process.listen(STREAM_TOPIC)
while true do
io.write("> ")
io.flush()
local input = io.readline()
if not input or input == "quit" or input == "exit" then break end
if input == "" then goto continue end
conversation:add_user(input)
local text, _, gen_err = stream_response(runner, conversation, stream_ch)
if gen_err then
io.print("Error: " .. tostring(gen_err))
goto continue
end
io.print("")
if text and text ~= "" then
conversation:add_assistant(text)
end
::continue::
end
process.unlisten(stream_ch)
io.print("Bye!")
end
return { main = main }
Patrones clave:
coroutine.spawnejecutarunner:step()en una corrutina separada para que la corrutina principal pueda procesar los chunks del streamchannel.selectmultiplexa el canal de stream y el canal de completado- Se crea un solo
process.listen()una vez y se reutiliza entre turnos - El texto se acumula para agregarlo al historial de la conversacion
Fase 5: Herramientas
Dale al agente herramientas que pueda llamar para acceder a capacidades externas.
Definir Herramientas
Crea src/tools/_index.yaml:
version: "1.0"
namespace: app.tools
entries:
- name: current_time
kind: function.lua
meta:
type: tool
title: Current Time
input_schema: |
{ "type": "object", "properties": {}, "additionalProperties": false }
llm_alias: get_current_time
llm_description: Get the current date and time in UTC.
source: file://current_time.lua
modules: [time]
method: handler
- name: calculate
kind: function.lua
meta:
type: tool
title: Calculate
input_schema: |
{
"type": "object",
"properties": {
"expression": {
"type": "string",
"description": "Math expression to evaluate"
}
},
"required": ["expression"],
"additionalProperties": false
}
llm_alias: calculate
llm_description: Evaluate a mathematical expression and return the result.
source: file://calculate.lua
modules: [expr]
method: handler
Los metadatos de las herramientas le indican al LLM que hace cada herramienta:
input_schemaes un JSON Schema que define los argumentosllm_aliases el nombre de funcion que ve el LLMllm_descriptionexplica cuando usar la herramienta
Implementar Herramientas
Crea src/tools/current_time.lua:
local time = require("time")
local function handler()
local now = time.now()
return {
utc = now:format("2006-01-02T15:04:05Z"),
unix = now:unix(),
}
end
return { handler = handler }
Crea src/tools/calculate.lua:
local expr = require("expr")
local function handler(args)
local result, err = expr.eval(args.expression)
if err then
return { error = tostring(err) }
end
return { result = result }
end
return { handler = handler }
Registrar Herramientas en el Agente
Actualiza la entrada del agente en src/_index.yaml para referenciar las herramientas:
- name: assistant
kind: registry.entry
meta:
type: agent.gen1
name: assistant
title: Assistant
comment: Terminal chat agent
prompt: |
You are a helpful terminal assistant. Be concise and direct.
Answer questions clearly. If you don't know something, say so.
Use tools when they help answer the question.
Do not use emoji in responses.
model: gpt-4.1-nano
max_tokens: 1024
temperature: 0.7
tools:
- app.tools:current_time
- app.tools:calculate
Agregar Ejecucion de Herramientas
Actualiza los modulos del proceso de chat para incluir json y funcs:
modules:
- io
- json
- process
- channel
- funcs
Actualiza src/chat.lua con ejecucion de herramientas:
local io = require("io")
local json = require("json")
local funcs = require("funcs")
local prompt = require("prompt")
local agent_context = require("agent_context")
local STREAM_TOPIC = "stream"
local function stream_response(runner, conversation, stream_ch)
local done_ch = channel.new(1)
coroutine.spawn(function()
local response, err = runner:step(conversation, {
stream_target = {
reply_to = process.pid(),
topic = STREAM_TOPIC,
},
})
done_ch:send({ response = response, err = err })
end)
local full_text = ""
while true do
local result = channel.select({
stream_ch:case_receive(),
done_ch:case_receive(),
})
if not result.ok then break end
if result.channel == done_ch then
local r = result.value
return full_text, r.response, r.err
end
local chunk = result.value
if chunk.type == "chunk" then
io.write(chunk.content or "")
full_text = full_text .. (chunk.content or "")
elseif chunk.type == "done" then
local r, ok = done_ch:receive()
if ok and r then
return full_text, r.response, r.err
end
return full_text, nil, nil
elseif chunk.type == "error" then
return nil, nil, chunk.error and chunk.error.message or "stream error"
end
end
return full_text, nil, nil
end
local function execute_tools(tool_calls)
local results = {}
for _, tc in ipairs(tool_calls) do
local args = tc.arguments
if type(args) == "string" then
args = json.decode(args) or {}
end
io.write("[" .. tc.name .. "] ")
io.flush()
local result, err = funcs.call(tc.registry_id, args)
if err then
results[tc.id] = { error = tostring(err) }
io.print("error")
else
results[tc.id] = result
io.print("done")
end
end
return results
end
local function run_turn(runner, conversation, stream_ch)
while true do
local text, response, err = stream_response(runner, conversation, stream_ch)
if err then
io.print("")
return nil, err
end
if text and text ~= "" then
io.print("")
end
local tool_calls = response and response.tool_calls
if not tool_calls or #tool_calls == 0 then
return text, nil
end
if text and text ~= "" then
conversation:add_assistant(text)
end
local results = execute_tools(tool_calls)
for _, tc in ipairs(tool_calls) do
local result = results[tc.id]
local result_str = json.encode(result) or "{}"
conversation:add_function_call(tc.name, tc.arguments, tc.id)
conversation:add_function_result(tc.name, result_str, tc.id)
end
end
end
local function main()
io.print("Terminal Agent (type 'quit' to exit)")
io.print("")
local ctx = agent_context.new()
local runner, err = ctx:load_agent("app:assistant")
if err then
io.print("Failed to load agent: " .. tostring(err))
return
end
local conversation = prompt.new()
local stream_ch = process.listen(STREAM_TOPIC)
while true do
io.write("> ")
io.flush()
local input = io.readline()
if not input or input == "quit" or input == "exit" then break end
if input == "" then goto continue end
conversation:add_user(input)
local text, gen_err = run_turn(runner, conversation, stream_ch)
if gen_err then
io.print("Error: " .. tostring(gen_err))
goto continue
end
if text and text ~= "" then
conversation:add_assistant(text)
end
::continue::
end
process.unlisten(stream_ch)
io.print("Bye!")
end
return { main = main }
El bucle de ejecucion de herramientas:
- Llama a
runner:step()con streaming - Si la respuesta contiene
tool_calls, ejecuta cada herramienta viafuncs.call() - Agrega las llamadas a herramientas y resultados a la conversacion
- Vuelve al paso 1 para que el agente incorpore los resultados
- Cuando no hay mas llamadas a herramientas, retorna el texto final
Ejecutar el Agente
wippy update
wippy run chat
Terminal Agent (type 'quit' to exit)
> what time is it?
[get_current_time] done
The current time is 17:20 UTC on February 12, 2026.
> what is 125 * 16?
[calculate] done
125 * 16 = 2000.
> quit
Bye!
Siguientes Pasos
- Modulo LLM - Referencia completa de la API LLM
- Modulo de Agentes - Referencia del framework de agentes
- Aplicaciones CLI - Patrones de E/S de terminal
- Procesos - Modelo de procesos y comunicacion